

July, 2006

Programmer’s Guide to the
I3RC Community Radiative Transfer Mode

I3RC is the “Intercomparison of Three-Dimensional Radiation Code” project, funded by US
National Aeronautics and Space Administration and the Atmospheric Radiation Measurement
Program of the Department of Energy. See http://i3rc.gsfc.nasa.gov

The community model framework was written by Robert Pincus (Robert.Pincus@colorado.edu)
with important contributions by Frank Evans (Evans@nit.colorado.edu). The documentation was
written by Robert Pincus.

This version of the document describes the Bramley release, dated July, 2006.

Overview

The I3RC Community Monte Carlo Model is a set of code for solving radiative transfer problems
in inhomogeneous cloudy atmospheres, with an emphasis on Monte Carlo methods. The basic
framework is a set of modules that describe parts of a radiative transfer problem, such as the illu-
mination source or the three-dimensional distribution of optical properties within a domain. On
top of this framework we have built a rudimentary solver for a particular class of radiative transfer
problems (the computation of fluxes at the top and bottom boundaries of a domain) as well as sev-
eral example program and utilities.

Framework design

The package is implemented in standard Fortran 95 to strike a balance between efficiency and
portability. It is coded in an “object-oriented” style that isn’t used much in the physical sciences
and may take some getting used to. The basic unit of code is a Fortran 95 module. Each module in
the framework is defined by one or more “objects” and a set of procedures (functions and subrou-
tines) that operate on those objects. Each object represents a specific part of the problem - the sin-
gle scattering phase function, for example. The objects are implemented as publicly-visible
derived types. The components of the derived types are hidden, however, and the underlying data
can only be accessed using the module’s procedures. This means that modules communicate
entirely through the data structures and procedures documented in this manual. We have provided
a reference implementation of the framework which we believe to be correct. Developers may
replace any module in the framework with their own implementation without worry if the new
version implements the data structures and procedures we have defined.

The modules in the basic framework can be used to define the radiative transfer problem at hand,
but the problem is solved by a Monte Carlo “integrator” which solves the radiative transfer equa-
tion by simulating the trajectories of a large number of photons. Flexibility in one of the great
strengths of the Monte Carlo method - it may be used to compute fluxes at particular levels, or
directional intensities, or to keep track of photon path lengths, and so on. Each of these problems
requires a different implementation of the integrator. We have provided a simple integrator mod-
ule that computes fluxes and intensities at the top and bottom boundaries and estimates of column
absorption. If your needs are different you will need to adapt the module we provide or write your
own from scratch. Since the problem definition and the form of the solution depend on the inte-
grator, the interface to the integrator module is flexible.

Modules in the reference implementation never read from the keyboard or write to the screen, but
instead communicate through variables and procedures defined in module ErrorMessages. We
strongly encourage other developers to do the same, since this will allow their code to be used in a
wider variety of environments.

Coding notes

The framework is coded using many of the object-oriented features of Fortran 95: derived types;
procedure overloading, including elemental functions; and access control through public and pri-
vate interfaces and derived types. It also makes extensive use of array operations. Developers
wishing to modify this code very much will need to be familiar with these ideas.
July 18, 2006

Modules define one or more derived types and procedures to act on them. Some kinds of proce-
dures are necessary for all derived types. All modules implement the following procedures for
each derived type:
• new_ stores a definition in a new variable. A call to new_RandomNumberSequence, for exam-

ple, initializes a random number generator from a user-provided seed and stores the random
number generator state in a variable of type randomNumberSequence.

• copy_ creates an identical copy of the input argument.
• getInfo_ is used to provide information about the internal state of the variable
• isReady_ is a boolean function indicating if the variable has been initialized
• finalize_ release all resources used by the variable, and returns it to an un-initialized state.

Some variables may use large amounts of memory or other resources, so these procedures can
be very useful.

Some modules also implement read_ and write_ procedures which store or retrieve a copy of the
variable in an external file. Implementations of a module is responsible for reading and writing its
own external files.

Working with the code framework

The code framework is intended to support a wide range of radiative transfer problems, so many
modules contain more functions than most users will need. The process of setting up a simple
radiative transfer problem, however, isn’t terribly complicated. Imagine that you want to compute
the radiative transfer through a variable cloud field without considering gases, aerosols, etc. You
will need to
• define the single scattering phase function for one or more drop sizes and store this in an

object representing the phase function table. This is done with function
new_PhaseFunctionTable from module scatteringPhaseFunctions.

• define the spatial domain of the problem using function new_Domain from module
opticalProperties to create a new object of type domain.

• define the cloud fields by storing the three-dimensionally varying extinction and single scat-
tering albedo in the domain using procedure addOpticalComponent from module
opticalProperties. At the same time you’ll indicate which single scattering phase function
should be used at each location in the domain.

• set up the radiative transfer problem by giving the 3D cloud fields to an object of type
integrator using procedure new_Integrator in module monteCarloRadiativeTransfer
(if you’re using the default implementation)

• seed the random number generator using procedure new_RandomNumberSequence from mod-
ule RandomNumbers

• specify the solar illumination, if your integrator requires it, using procedure
new_PhotonStream in module monteCarloIllumination

• compute the radiative transfer and record the results (procedures
computeRadiativeTransfer and reportResults in the default implementation).

The following sections describe the interfaces to each module in detail, proceeding from the high-
est level to the lowest. To gain an overview and begin using the code it’s probably better to begin
with one of the example programs.
July 18, 2006

Module monteCarloRadiativeTransfer

This module computes the radiative transfer for a given three-dimensional distribution of optical
properties and a specified illumination.

This module is the heart of the Monte Carlo model - it is where the desired radiative transfer quan-
tities are computed. Monte Carlo methods solve the radiative transfer equation by simulating the
trajectories of a very large number of photons. A nearly infinite number of radiative quantities can
be computed from these trajectories, including photon path length distributions, hemispherically-
integrated fluxes, directional intensities, and so on. We have provided a very simple integrator that
computes fluxes and intnesities at the boundaries, column absorption, and the domain-mean
absorption profile. Integrators for other tasks will require different kinds of input (i.e. a set of
directions, if intensity is being computed) and will provide different kinds of output (i.e. the set of
intensities at the desired angles). Thus the interface to this module, especially procedures
specifyParameters and reportResults, should be adapted as the need arises.

Background

Monte Carlo methods solve the radiative transfer equation by sampling the trajectories of a large
number of photons. In solar radiation problems, the photons are introduced with random initial
position at the boundary of the domain. Their directions are chosen according to the illumination
conditions.

The photons then begin their flight. A sample transmission is chosen uniformly between 0 and 1.
The photon travels along its path until the cumulative extinction along the photons’ path reaches
the value that corresponds to this transmission. The photon then experiences a scattering event.
The scattering angle is determined by choosing a random number and comparing this to the
cumulative phase function. The photon’s new direction is determined, a new transmission is deter-
mined, and this process repeats until the photon leaves the domain or is absorbed.

Absorption during scattering is normally modeled by multiplying the photon weight (initially 1)
by the single scattering albedo of the medium doing the scattering. Radiative quantities are then
computed from these weighted photons. Photons can be considered absorbed if their weight falls
below some very small value.

In highly variable media a technique called “maximum cross-section” is often used to reduce the
per-photon variance of flux. The cumulative extinction at each step is scaled by the maximum
extinction within the domain, and the likelihood of scattering at the end of each step depends on
the ratio of the local to the maximum extinction.

The atmosphere may contain more than one optically active component (e.g. aerosols, gases, and
clouds often co-exist). The extinction accumulated along the photon trajectory is the extinction
due to all components. Scattering may be treated either by averaging the single scattering phase
functions (weighted by the extinction and single scattering albedo) or by choosing the phase func-
tion for a single component based on the relative amounts of extinction.
July 18, 2006

A technique called “Russian roulette” can help speed up calculations in absorbing media. At each
scattering event, the photon weight is compared to a random number. If the weight exceeds the
random number the photon trajectory is terminated, otherwise the photon weight is rest to 1. In
our implementation Russian roulette is performed only when the photon weight is less than one-
half.

Intensity is computed using a technique called “local estimation.” At each scattering event, the
total extinction to the boundary from the scattering location is computed in each direction at
which intensity is desired. The intensity at the exiting location is then incremented by the product
of the transmission along that direction, the phase function of the scattering particle evaluated at
the angle between the direction the photon is traveling and the intensity direction, and the photon
weight.

The phase functions of large particles (i.e. those much larger than the wavelength of light being
simulated) have large forward peaks due to diffraction. These peaks may be orders of magnitude
larger than the phase function only a few degrees off-axis. If the forward peak happens to align
with one of the directions at which intensity is being computed the contribution from an individ-
ual scattering event can be quite large, leading to large variance between calculations (and hence
large error estimates). Efforts are often made to reduce this variance. We have introduced one such
method here: the phase function used for local estimation can be replaced by a hybrid which
replaces the original phase function at small angles by a Gaussian of user-specified width. The
hybrid phase function is constructed to be continuous and properly normalized.

Using the module

Depends on modules: ErrorMessages, RandomNumbers, numericUtilites,
scatteringPhaseFunctions, inversePhaseFunctions, opticalProperties,
monteCarloIllumination.

Defines types: integrator.

Procedures: new_Integrator, specifyParameters, computeRadiativeTransfer,
reportResults, copy_Integrator, isReady_Integrator, finalize_Integrator.

Procedure new_Integrator

Creates a new integrator object. This includes the copies of all the atmospheric properties within
the domain; it might also include the specification of the surface.

Definition

function new_Integrator(atmosphere, status) result(new)
type(domain), intent(in) :: atmosphere
type(ErrorMessage), intent(out) :: status
type(integrator):: new
July 18, 2006

Implementation notes

In the default implementation, the surface is a Lambertian reflector with default albedo 0. This can
be changed by a subsequent call to specifyParameters.

If the inverse phase function tables are not supplied in the definition of the atmosphere they are
computed during the creation of the integrator.

Procedure specifyParameters

Specify problem- and integrator-specific parameters. The arguments to this function depend on
the integrator itself. If, for example, the integrator used different values of the maximum cross-
section in various layers, this routine would be used to specify the limits of those layers.

Definition

subroutine specifyParameters(thisIntegrator, surfaceAlbedo, useRayTracing, &
 minForwardTableSize, minInverseTableSize, &
 intensityMus, intensityPhis, computeIntensity, &
 status)
type(integrator), intent(inout) :: thisIntegrator
real, optional, intent(in) :: surfaceAlbedo
logical, optional, intent(in) :: useRayTracing
integer, optional, intent(in) :: minForwardTableSize, &
 minInverseTableSize
real, dimension(:), &
 optional, intent(in) :: intensityMus, intensityPhis
logical, optional, intent(in) :: computeIntensity, useRussianRoulette
logical, optional, intent(in) :: useHybridPhaseFunsForIntenCalcs
real, optional, intent(in) :: hybridPhaseFunWidth
type(ErrorMessage), intent(out) :: status

thisIntegrator An initialized integrator object.

surfaceAlbedo The albedo of the Lambertian surface. The default value is 0 (a
black surface).

useRayTracing Determines the algorithm used to compute the Monte Carlo radi-
ative transfer. If .true. use standard Monte Carlo methods; oth-
erwise use maximum cross-section. Default is .false.

minForwardTableSize,
minInverseTableSize

The number of steps in the forward and inverse phase function
tables. The inverse phase function table is needed to compute
photon trajectories; the forward table is used only if intensities
are desired. Higher values of these parameters lead to higher
accuracy at the cost of more up-front computation.
July 18, 2006

Procedure computeRadiativeTransfer

Processes batches of photons defined by an object of type photonSteam and computes the radia-
tive quantities that result. Each call to computeRadiativeTransfer is considered a new calcula-
tion (i.e. previous results are discarded when this function is called).

Definition

subroutine computeRadiativeTransfer(thisIntegrator, &
 randomNumbers, incomingPhotons, status)
type(integrator), intent(inout) :: thisIntegrator
type(randomNumberSequence), intent(inout) :: randomNumbers
type(photonStream), intent(inout) :: incomingPhotons
type(ErrorMessage), intent(out) :: status

intensityMus,
intensityPhis

The directions at which the integrator should compute intensity,
specified as the cosine of the zenith angle (positive values for
upwelling intensity) and the azimthal angle (in degrees). The two
arrays must be the same length. Intensity will be computed once
these arrays are supplied .

computeIntensity Flag indicating if intensity is to be computed during
computeRadiativeTransfer. This value is ignored if
intensityMus and intensityPhis are provided during the
same call to specifyParameters.

useRussianRoulette Turns Russian roulette on and off. There is little reason not to use
this algorithm.

useHybridPhaseFunsFor
IntenCalcs,
hybridPhaseFunctionWi
dth

Specifies if hybrid phase functions (as described in the introduc-
tion) are to be used for local estimation calculations of intensity.
useHybridPhaseFunsForIntenCalcs must be set to .true.
and hybridPhaseFunctionWidth to a number betweeen 0 and
30 degrees; though a more reasonable value would be 5-10
degrees.

status Errors might be reported if the integrator object is not ready, if no
photons are available, etc.

thisIntegrator An initialized integrator object.

randomNumbers An initialized random number stream.

incomingPhotons The initial x-y position and direction of travel of a number of
incoming photons.

status Errors might be reported if the integrator object is not ready, if no
photons are available, etc.
July 18, 2006

Implementation notes

Both ray-tracing and maximum cross-section solvers are available in the default implementation.
They are chosen at compile time by have procedure computeRadiativeTransfer call either
computeRT_MaxCrossSection or computeRT_PhotonTracing.

Other implementations of the integrator might wish to specify the illumination directly, rather
than using photonStream objects. In that circumstance the illumination would probably be speci-
fied in the call to computeRadiativeTransfer.

Procedure reportResults

Describes the results of the last radiative transfer calculation (i.e. the last call to
computeRadiativeTransfer). Different integrators will compute different quantities (e.g. fluxes
or intensities), so this interface will vary between integrators. The interface for the default imple-
mentation is shown here.

Definition

subroutine reportResults(thisIntegrator, &
 meanFluxUp, meanFluxDown, meanFluxAbsorbed, &
 fluxUp, fluxDown, fluxAbsorbed, &
 absorbedProfile, volumeAbsorption, &
 meanIntensity, intensity,status)
type(integrator),intent(in) :: thisIntegrator
real, optional, intent(out) :: meanFluxUp, meanFluxDown, meanFluxAbsorbed
real, dimension(:, :), &
 optional, intent(out) :: fluxUp, fluxDown, fluxAbsorbed
real, dimension(:), optional, intent(out) :: absorbedProfile
real, dimension(:, :, :), optional, intent(out) :: volumeAbsorption
real, dimension(:), optional, intent(out) :: meanIntensity
real, dimension(:, :, :), optional, intent(out) :: intensity
type(ErrorMessage), intent(inout) :: status

thisIntegrator An initialized integrator object.

meanFluxUp,
meanFluxDown,
meanFluxAbsorbed

Domain-mean upwelling and downwelling fluxes at the top and
bottom boundaries of the domain, respectively, and domain-
mean absorption within the domain.

fluxUp, fluxDown,
fluxAbsorbed

Column-by-column values of upwelling and downwelling fluxes
at the top and bottom boundaries of the domain, respectively, and
domain-mean absorption within the domain.

absorbedProfile Horizontally-averaged absorption as a function of height. Units

are W/m3, normalized by the specified solar flux.

volumeAbsorption Absorption (flux divergence) within each grid cell.
July 18, 2006

Use

A simple Monte Carlo integration would make the following calls:

 mcIntegrator = new_Integrator(exampleDomain, status = status)
randoms = new_RandomNumberSequence(seed = …)
incomingPhotons = new_PhotonStream(solarMu, solarAzimuth, &
 numberOfPhotons = …, &
 randomNumbers = randoms, status = status)
call computeRadiativeTransfer(mcIntegrator, randoms, incomingPhotons, &
 status)
call reportResults(mcIntegrator, &
 fluxUp(:, :), fluxDown(:, :), fluxAbsorbed(:, :), &
 status)

Implementation notes

The default implementation computes the upwelling flux at the top boundary, the downwelling
flux at the bottom boundary, and the flux absorbed in between; all three quantities are computed
independently. These quantities are available as domain means or on a column-by-column basis.

Procedure copy_Integrator

Copies one integrator object to another. This would mostly be useful if different batches of pho-
tons were to be processed in parallel.

Definition

function copy_Integrator(original) result(copy)
type(integrator), intent(in) :: original
type(integrator) :: copy

Procedure isReady_Integrator

Returns .TRUE. if the integrator is ready to process batches of photons, i.e. if the problem has
been set up correctly.

meanIntensity Domain-mean intensity at each of the angles specifed by
intenstiyMus and intensityPhis in a call to
specifyParameters.

intensity Column-by-column intensity at each of the angles specifed by
intenstiyMus and intensityPhis in a call to
specifyParameters. The array is dimensioned (x, y, direction).

status Errors might be reported if the integrator object is not ready, if
the results arrays aren’t the same size as the integrator’s domain,
etc.
July 18, 2006

Definition

function isReady_Integrator(thisIntegrator)
type(integrator), intent(in) :: thisIntegrator
logical :: isReady_Integrator

Procedure finalize_Integrator

Release the resources used by an integrator.

Definition

subroutine finalize_Integrator(thisIntegrator)
type(integrator), intent(out) :: thisIntegrator

Implementation notes

The default version of the integrator makes copies of the three-dimensional distribution of all
optical properties within the domain, so each object uses a lot of memory. That makes it especially
important to finalize integrator objects when they’re not needed any more.
July 18, 2006

Module opticalProperties

This module provides a representation of the three-dimensional distribution of optical properties
within a domain.

Background

This module represents the spatial distribution of optical properties to be used in a radiative trans-
fer calculation. The domain is specified as the boundaries of cells on a three-dimensional rectan-
gular grid (i.e. the plane-parallel assumption is made).The domain holds one or more optically
active components (e.g. clouds, aerosols, gases).Each component is defined within each grid cell
by its single scattering properties: the values of extinction and single scattering albedo and the
phase function; the latter is specified as a key into a table of phase functions. Inverse phase func-
tions may be stored. Components may vary vertically or both vertically and horizontally, and need
not fill the vertical extent of the domain.

Using the module

Depends on modules: CharacterUtils, ErrorMessages, scatteringPhaseFunctions,
inversePhaseFunctions.

Defines types: domain.

Procedures: new_Domain, addOpticalComponent, deleteOpticalComponent,
replaceOpticalComponent, getOpticalPropertiesByComponent, getInfo_Domain,
write_Domainm read_Domain, finalize_Domain

Conventions: Physical units are not specified but must be consistent. If positions are indicated in
meters, for example, extinction must be provided in inverse meters.

Procedure new_Domain

Creates a new domain composed of cells on a rectangular grid. The variables xPosition,
yPosition, and zPosition denote the edges of the cells.

Definition

function new_Domain(xPosition, yPosition, zPosition, status)
real, dimension(:), intent(in) :: xPosition, yPosition, zPosition
type(ErrorMessage), intent(out) :: status
type(domain) :: new_Domain

xPosition, yPosition,
zPosition

 The locations of the cell boundaries. These must be monotoni-
cally increasing.

status An error occurs if any of xPosition, yPosition, zPosition
contain values that are not unique and increasing.
July 18, 2006

Use

This call defines a domain with nColumns cells of equal width deltaX in the x axis, one column
of width 500 along the y axis, and nLayers of depth deltaZ along the vertical axis.

stepCloud = &
new_Domain(xPosition = deltaX * (/ 0., (real(i), i = 1, nColumns) /), &
 yPosition = (/ 0., 500.0 /), &
 zPosition = deltaZ * (/ 0., (real(i), i = 1, nLayers) /) , &
 status = status)

Procedure addOpticalComponent

Define the values of extinction, single scattering albedo, phase function, and (optionally) inverse
phase function within the domain for a new optically active component. The phase function at
each location is defined using an integer index into a table of phase functions; that is, if
phaseFunctionIndex(i, j, k) = l, then the phase function within that cell is given by a call
to getElement(l, phaseFunctions, status) (see module scatteringPhaseFunctions).
Inverse phase functions are treated similarly: if phaseFunctionIndex(i, j, k) = l, then the
corresponding inverse phase function is stored in the lth column of the array returned by
getInversePhaseFunctions.

Optical properties are defined within cells, so the arrays that define the single scattering properties
should be one smaller in each dimension than the vectors that determined the cell boundaries
when new_Domain was called. The component need not fill the vertical extent of the domain.
Arrays that are smaller than the domain requires in the vertical may be supplied; they are assumed
to begin at the lowest level unless the argument zLevelBase is supplied.

Single scattering properties may defined with three-dimensional arrays or one-dimensional vec-
tors; if vectors are supplied the optical component is assumed to vary only in the vertical.

Definition

subroutine addOpticalComponent(thisDomain, componentName, &
 extinction, singleScatteringAlbedo, &
 phaseFunctionIndex, phaseFunctions, &
 inversePhaseFunctions, &
 zLevelBase, status)

type(domain), intent(inout) :: thisDomain
character (len = *), intent(in) :: componentName
real, dimension(), intent(in) :: extinction, &
 singleScatteringAlbedo
integer, dimension(), intent(in) :: phaseFunctionIndex
type(phaseFunctionTable), intent(in) :: phaseFunctions
integer, optional, intent(in) :: zLevelBase
type(ErrorMessage), intent(out) :: status

thisDomain The domain to which the new optical component should be
added.
July 18, 2006

Use

The variables extinction, singleScatteringAlbedo, and phaseFunctionIndex define the
single scattering properties of each component within the domain. The three arrays must be con-
formable (i.e. they must have the same extent in each dimension.) Imagine a domain defined by
vectors xPos, yPos, and zPos. If the component varies only in the vertical (a gaseous absorber,
say) the single scattering arrays may be provided as one-dimensional arrays of length less than or
equal to size(zPos)-1. If the length is less than size(zPos)-1 the component is understood not
to fill the entire vertical extent of the domain, but instead extends from the level given by
zLevelBase upwards.

Components which vary in three dimensions must fill the domain both completely in both hori-
zontal directions (that is, size(extinction, 1) must be equal to size(xPos)-1, and similarly
for the y direction. Components which vary in the horizontal need not fill the domain in the verti-
cal.

Procedure deleteOpticalComponent

Releases the resources associated with a given optical component within a domain.

Definition

subroutine deleteOpticalComponent(thisDomain, componentNumber, status)
 type(domain), intent(inout) :: thisDomain
 integer, intent(in) :: componentNumber
 type(ErrorMessage), intent(out) :: status

componentName A description of the component.

extinction,
singleScatteringAlbedo

The extinction and single scattering albedo within each cell in
the domain. May be one or three dimensional; see the section on
Use below.

phaseFunctionIndex An integer index indicating which entry in the phase function
table should be used for each cell.

phaseFunctions A table of phase functions.

zLevelBase Optionally, the lowest level at which the component is defined,
that is, the component extends from level zLevelBase upward.
The default value is 1.

status An error occurs if arguments have the wrong sizes (i.e. three-
dimensional arrays are not the same size as the underlying
domain) or if they don’t make sense (i.e. single scattering albedo
is outside the range [0, 1]).
July 18, 2006

Use

The number of components held in the domain and their names can be determined by calling
getInfo_Domain.

Procedure replaceOpticalComponent

Replaces the current values that define an optical component with new values. The component
number remains the same.

Definition

subroutine replaceOpticalComponent3D(thisDomain, componentNumber, &
 componentName, &
 extinction, singleScatteringAlbedo, &
 phaseFunctionIndex, phaseFunctions, &
 inversePhaseFunctions, &
 zLevelBase, status)
 type(domain), intent(inout) :: thisDomain
 integer, intent(in) :: componentNumber
 character (len = *), intent(in) :: componentName
 real, dimension(:, :, :), intent(in) :: extinction, &
 singleScatteringAlbedo
 integer, dimension(:, :, :), intent(in) :: phaseFunctionIndex
 type(phaseFunctionTable), intent(in) :: phaseFunctions
 type(inversePhaseFunctionTable), &
 optional, intent(in) :: inversePhaseFunctions
 integer, optional, intent(in) :: zLevelBase
 type(ErrorMessage), intent(out) :: status

Use

This subroutine is useful for changing the optical properties of one component while the proper-
ties of the other components remain the same. It might be used, for example, to change the pro-
files of gaseous absorbers to do a k-distribution integration.

Procedure getOpticalPropertiesByComponent

Retrieves information about the domain and the optical properties it contains.

Definition

subroutine getOpticalPropertiesByComponent(thisDomain, &
 totalExtinction, &
 cumulativeExtinction, &
 singleScatteringAlbedo, &
 phaseFunctionIndex, &
 phaseFunctions, &
 status)
type(domain), intent(in) :: thisDomain
real, dimension(:, :, :), intent(out) :: totalExtinction
real, dimension(:, :, :, :), intent(out) :: cumulativeExtinction, &
July 18, 2006

 singleScatteringAlbedo
integer, dimension(:, :, :, :), intent(out) :: phaseFunctionIndex
type(phaseFunctionTable), &
 dimension(:), optional, intent(out) :: phaseFunctions
type(ErrorMessage), intent(out) :: status

Procedure getInfo_Domain

Retrieves information about the domain, including the number of cells, their boundary positions,
and the number of names of components.

Definition

subroutine getInfo_Domain(thisDomain, numX, numY, numZ, &
 xPosition, yPosition, zPosition, &
 numberOfComponents, componentNames, status)
type(domain), intent(in) :: thisDomain
integer, optional, intent(out) :: numX, numY, numZ
real, dimension(:), optional, intent(out) :: xPosition, yPosition, &
 zPosition
integer, optional, intent(out) :: numberOfComponents
character(len = *), &
 dimension(:), optional, intent(out) :: componentNames
type(ErrorMessage), intent(out) :: status

thisDomain The domain to inquire from.

totalExtinction Three-dimensional field containing the sum of extinction from
all components in the domain.

In the following four-dimensional arrays, the first three dimensions correspond to space (x-y-z)
and the fourth indexes the optical component.

cumulativeExtinction,
singleScatteringAlbedo

The single scattering albedo and cumulative extinction.

phaseFunctionIndex For each component, an integer index indicating which entry in
the component’s phase function table should be used for each
cell.

phaseFunctions A vector of phase function tables; element i is the phase function
table for component i.

status An error occurs if the arrays (totalExtinction, etc.) are not the
same as the stored representation or if the wrong number of com-
ponents are requested.

thisDomain The domain to inquire from.

numX, numY, numZ The number of cells in each dimension of the domain.
July 18, 2006

Use

This procedure might be called multiple times with different arguments. For example:

 ! How big is the atmospheric domain, and what are the cell boundaries?
!
call getInfo_Domain(atmosphere, numX, numY, numZ, &
 numberOfComponents = numComponents, status = status)
allocate(xPosition(numX + 1), yPosition(numY + 1), &
 zPosition(numZ + 1))
call getInfo_Domain(atmosphere, &
 xPosition = xPosition, &
 yPosition = yPosition, &
 zPosition = zPosition, status = status)

Procedure write_Domain

Writes information about a domain, including its components, to a persistent file.

Definition

subroutine write_Domain(thisDomain, fileName, status)
type(domain), intent(in) :: thisDomain
character(len = *), intent(in) :: fileName
type(ErrorMessage), intent(out) :: status

Implementation notes

The default implementation requires Netcdf 3.5.1 or higher with Fortran 90 support. The phase
function and inverse phase function tables are stored in separate files whose names are recorded in
the file describing the domain.

Procedure read_Domain

Definition

subroutine read_Domain(fileName, thisDomain, status)
character(len = *), intent(in) :: fileName
type(domain), intent(out) :: thisDomain

xPosition, yPosition,
zPosition

The boundaries of the cells; note that the length of each of these
vectors should be one larger than the number of cells (i.e.
size(xPosition) = numX + 1)

numberOfComponents The number of components stored in the domain.

componentNames The names of the components, as provided during the call to
addOpticalComponent.

status An error occurs if the array holding the names or positions is not
the same length as the number of components.
July 18, 2006

type(ErrorMessage), intent(out) :: statusDefinition

Implementation notes

The default implementation requires Netcdf 3.5.1 or higher with Fortran 90 support. The phase
function and inverse phase function tables are stored only as the names of files, which might cause
problems if the domain files, phase function table files, and inverse phase function table files are
not kept separate.

Procedure finalize_Domain

Releases the resources used by a domain and the optical components it contains.

Definition

subroutine finalize_Domain(thisDomain)
type(domain), intent(out) :: thisDomain
July 18, 2006

Module monteCarloIllumination

This module provides a description of a incoming illumination for a radiative transfer problem. It
is designed to describe incoming solar radiation.

Background

It is often convenient to think of Monte Carlo calculations as simulations of the trajectories of a
large number of photons as they make their way through a medium. For shortwave problems in
the earth’s atmosphere those photons arrive from the Sun, whose position is specified in terms of
the solar zenith angle and the solar azimuthal angles .

For some problems it may desirable to compute averages over either or both of the polar and azi-
muthal angles. If the problem has no specific orientation, for example, one might want to compute
the azimuthally-averaged reflection from a given atmosphere. When using Monte Carlo methods
such averages may be computed by illuminating the atmosphere from all sides at once, i.e. by
introducing photons from random azimuths.

This module precomputes the initial direction and position of incoming photons for a variety of
commonly-used illumination conditions. Doing so simplifies the logic in the main Monte Carlo
integrator at the expense of memory. The default implementation, for example, uses 16 bytes per
photon. Users may choose to create small batches of photons, or to write integrators that don’t use
this module.

Using the module

Depends on modules: ErrorMessages, RandomNumbers.

Defines types: photonStream

Procedures: new_PhotonStream, finalize_PhotonStream, getNextPhoton,
morePhotonsExist

Procedure new_PhotonStream

Creates a new stream of incoming photons. The illumination is specified in terms of the cosine of
the solar zenith angle and the azimuth of the incoming solar beam.

Definition

function newPhotonStream(solarMu, solarAzimuth, &
 numberOfPhotons, randomNumbers, status) result(photons)

real, optional, intent(in) :: solarMu, solarAzimuth
integer :: numberOfPhotons
type(randomNumberSequence), intent(inout) :: randomNumbers
type(ErrorMessage), intent(out) :: status

μ0 φ0
July 18, 2006

type(photonStream) :: photons

Use

In this example, the variable incomingPhotons of type photonStream is filled with a million
photons at a solar zenith angle of 60 degrees and initial direction along the positive x axis.

 type(ErrorMessage) :: status
type(randomNumberSequence) :: randoms
type(photonStream) :: incomingPhotons
integer, parameter :: numPhotonsPerBatch = 1E6
…
randoms = new_RandomNumberSequence(seed = 100)
incomingPhotons = new_PhotonStream(solarMu = 0.5, solarAzimuth = 0., &
 numberOfPhotons = numPhotonsPerBatch, &
 randomNumbers = randoms, status = status)

Procedure finalize_PhotonStream

Releases the resources used by an object of type photon_stream. These resources can be consid-
erable if the number of photons is large.

Definition

 subroutine finalize_PhotonStream(photons)
 type(photonStream), intent(inout) :: photons

Use

Calling this function frees all resources used by the variable. All data is lost.

solarMu The cosine of the solar zenith angle. It may be either positive or
negative. If this value is not supplied, the initial values of μ are
chosen uniformly, i.e. the solar flux on the horizontal is equally
weighted in μ. This is a “global” average weighting, and the day-
time average is half the solar constant.

solarAzimuth The azimuthal direction of the incoming photons, in degrees,
supplied only if solarMu is specified. If solarMu is provided but
solarAzimuth is not the incoming photons are introduced at a
fixed zenith angle but at random azimuths.

numberOfPhotons The number of incoming photons to create.

randomNumbers A properly initialized variable of type randomNumberSequence.
This is used to choose the initial positions and, if necessary,
direction of each incoming photon.

status This procedure reports errors or warnings if the input arguments
do not make sense (i.e. the value of the phase function is less
than 0 at some angle).
July 18, 2006

Procedure getNextPhoton

Describes the initial position and direction of the next photon available from an initialized
photonStream. Each call to getPhotonStream “uses up” a photon.

Definition

subroutine getNextPhoton(photons, xPosition, yPosition, &
 solarMu, solarAzimuth, status)
type(photonStream), intent(inout) :: photons
real, intent(out) :: xPosition, yPosition,&
 solarMu, solarAzimuth
type(ErrorMessage), intent(out) :: status

Use

The following code segment might be at the beginning of the loop over each photon in the Monte
Carlo integrator. It computes the initial location of the each photon in physical coordinates within
the domain whose limits are x0 to xMax and y0 to yMax, and the initial direction, expressed as a set
of three direction cosines.

 photonLoop: do
 if(.not. morePhotonsExist(incomingPhotons)) exit photonLoop
 ! This means we've used all the photons
 call getNextPhoton(incomingPhotons, xPos, yPos, mu, phi, status)
 ! Incoming xPos, yPos are between 0 and 1.
 ! Translate these positions to the local domain
 xPos = x0 + xPos * (xMax - x0)
 yPos = y0 + yPos * (yMax - y0)
 zPos = zMax
 !
 ! Direction cosines S are defined so that
 ! S(1) = sin(theta) * cos(phi), projection in X direction
 ! S(2) = sin(theta) * sin(phi), projection in Y direction
 ! S(3) = cos(theta), projection in Z direction

photons An initialized variable of type photonStream.

xPosition, yPosition The x and y location of the next photon, distributed uniformly
across the interval [0, 1] in both directions.

solarMu, solarAzimuth The initial direction of the next photon, expressed as the cosine
of the polar angle (between 0 and 1) and the azimuthal angle in
degrees, measured in radians, from the positive x axis. The polar
angle is always negative, so that the photons are moving down.
These values may be fixed or may vary, depending on how
photonStream was initialized.

status This procedure reports errors if the variable photons has not
been initialized or if the procedure is called when all the photons
have been used.
July 18, 2006

 sinTheta = sqrt(1. - mu**2)
 directionCosines(:) = (/ sinTheta * cos(phi), sinTheta * sin(phi), mu /)
 !
 ! Loop over the order of scattering
 …
end do photonLoop

Procedure morePhotonsExist

Indicates whether a variable of type photonStream has any more photons left.

Definition

function morePhotonsExist(photons)
type(photonStream), intent(inout) :: photons
logical :: morePhotonsExist

Use

See the example for procedure getNextPhoton.
July 18, 2006

Module RandomNumbers

This module provides a uniform interface to random number generators.

Background

Monte Carlo methods are based on the ability to generate long sequences of pseudo-random num-
bers. The generators must be “seeded” an some initial value (which is not the same as the first ran-
dom number in the sequence). We encapsulate the state of the random number generator so that
different streams of random numbers can be generated in parallel.

Fortran 90 include random number generation, but these implementations aren’t parallel and
depend on the platform. We don’t recommend using them.

Implementation notes

In the current implementation, the random numbers are generated with a Mersenne Twister
(http://www.math.keio.ac.jp/matumoto/emt.html).

Using the module

Depends on modules: none.

Defines types: randomNumberSequence

Procedures: new_RandomNumberSequence, finalize_RandomNumberSequence,
getRandomReal

Procedures

Procedure new_RandomNumberSequence

Creates a new random number sequence from a scalar or vector integer seed.

Definition

function new_RandomNumberSequence(seed) result(randoms)
! seed may be either
integer, intent(in) :: seed
! or
integer, dimension(:), intent(in) :: seed
type(RandomNumberSequence) :: randoms

Use

Random number streams must be initialized (“seeded”) before they can be used. The integer seed
may be a scalar or a vector of arbitrary length.

 randoms = new_RandomNumberSequence(seed = (/ 10, 100, 1000 /))
July 18, 2006

Procedure finalize_RandomNumberSequence

Releases resources used by a variable of type RandomNumberSequence and returns the variable to
an un-initialized state.

Definition
subroutine finalize_RandomNumberSequence(randoms)
 type(RandomNumberSequence), intent(out) :: randoms

Procedure getRandomReal

Gets the next real number on the interval [0, 1] from a previously-initialized sequence of random
numbers.

Definition

function getRandomReal(randoms)
type(RandomNumberSequence), intent(inout) :: randoms
real :: getRandomReal

Use

Random numbers are generated one at a time; if you want more than one you must write a loop.

 do i = 1, numberOfRandoms
 randomNumbers(i) = getRandomReal(randoms)
end do
July 18, 2006

Module inversePhaseFunctions

This module computes the inverse scattering phase functions from a set of phase functions stored
in a variable of type phaseFunctionTable from module scatteringPhaseFunctions. The
inverse phase functions are returned as a 2D array. The first dimension of length N entries; entry i
contains the scattering angle at which the integral of the phase function has the normalized value
i/N. The second dimension corresponds to the variation according to some key parameter (i.e.
drop size); it is. The inverse phase function table simplifies the calculation of the scattering angle
at each scattering event during a Monte Carlo calculation.

Background

Monte Carlo methods solve the radiative transfer equation by simulating the trajectories of a large
number of photons. At each scattering event the photon’s new direction must be determined from
the single scattering phase function . This can be accomplished through the cumulative inte-

gral of the phase function

 (1)

 varies between 0 and 1 if the scattering phase function is normalized. The new scattering
direction can be found by choosing a random number r from a uniform distribution between 0 and
1, then finding the value of at which . In practice, it is often easiest to pre-compute

 for a large number of equally-spaced values of r and store the results in a table.

This module provides a way to compute the cumulative phase functions in a consistent way.

Using the module

Depends on modules: scatteringPhaseFunctions, numericUtilites, ErrorMessages.

Procedures: computeInversePhaseFuncTable

Conventions: Angles are expressed in radians.

Procedure computeInversePhaseFuncTable

Computues a table of inverse phase functions from

Definition

subroutine computeInversePhaseFuncTable(forwardTable, inverseTable, status) &

type(phaseFunctionTable), intent(in) :: forwardTable
real, dimension(:, :), intent(out) :: inverseTable

P θ()

C θ()

C θ() P θ() θd

0

θ

∫=

C θ()

θ C θ() r=

θ r()
July 18, 2006

type(ErrorMessage), intent(inout) :: status

forwardTable A variable of type phaseFunctionTable as defined in module
scatteringPhaseFunctions.

inverseTable The inverse phase function table. The first dimension is the num-
ber of equal probability intervals, so that entry i of the total num-
ber N contains the scattering angle corresponding to C = i/N.
The second is the number of entries in the phase function table.

status This procedure reports errors or warnings if the input arguments
do not make sense (i.e. arrays are the wrong sizes, variables are
not initialized).
July 18, 2006

Module scatteringPhaseFunctions

This module represents the results of single scattering calculations: the single scattering phase
function and, optionally, the extinction and single scattering albedo. There are facilities to repre-
sent the results of individual calculations (i.e. a single drop size distribution) or a set of such cal-
culations.

Background

This module represents single scattering calculations, especially the single scattering phase func-
tion P(Θ) or a collection of such phase functions. The phase function describes how light incident
on a volume is redistributed with respect to the scattering angle Θ or the cosine of this angle

. The phase function is normalized such that:

(1)

Phase functions are frequently expressed in a Legendre polynomial expansion

 (2)

where are the Legendre polynomials (defined on the interval from 0 to 1) and are the

coefficients in the expansion. Scattering phase functions are determined by single scattering cal-
culations, which might also predict the extinction and single scattering albedo. These latter quan-
tities may optionally be stored in variables of type phaseFunction and phaseFunctionTable.

This module contains parallel representations for single phase functions and for tabulated sets of
phase functions. The tables might be used, for example, to represent how the phase function varies
with particle size.

Using the module

Depends on modules: numericUtilites, errorMessages.

Defines types: phaseFunction, phaseFunctionTable.

Procedures: new_PhaseFunction, copy_PhaseFunction, getInfo_PhaseFunction,
finalize_phaseFunction, isReady_phaseFunction,
getPhaseFunctionValues, getPhaseFunctionCoefficients,
getExtinction, getSingleScatteringAlbedo,
new_PhaseFunctionTable, copy_PhaseFunctionTable, getInfo_PhaseFunctionTable,
finalize_phaseFunctionTable, isReady_phaseFunctionTable,
getElement, write_PhaseFunctionTable, read_PhaseFunctionTable

μ Θcos=

P μ() μd

0

1

∫ 1=

P μ() 2l 1+()χlPl μ()
l 0=

L

∑=

Pl μ() χl
July 18, 2006

Conventions: Scattering angles are in radians, ascending from 0 (forward scattering) to π (back
scattering). Coefficients in the Legendre expansion don’t include the 2 l + 1 factor.

Procedures for individual phase functions

Procedure new_PhaseFunction

Creates a new phase function definition, specified either as a set of coefficients in a Legendre
polynomial expansion, or as a set of angles and the value of the phase function at each angle.

Definition

function new_PhaseFunction(phaseFunctionDefinition, &
 extinction, singleScatteringAlbedo, &
 description, status) result(newPhaseFunction)
! phaseFunctionDefinition may be either
real, dimension(:), intent(in) :: value, scatteringAngle
! or
real, dimension(:), intent(in) :: legendreCoefficients
! Other arguments are
real, optional, intent(in) :: extinction, &
 singleScatteringAlbedo
character(len = *), optional, intent(in) :: description
type(ErrorMessage), intent(out) :: status
type(phaseFunction) :: newPhaseFunction

Use

In this example, the variable phase of type phaseFunction is used to store a Henyey-Greenstein
phase function.

phaseFunctionDefinition may be specified in one of two mutually exclusive ways.

value,
scatteringAngle

Two arrays of equal length. scatteringAngle is specified in
radians, and must increase from 0 (forward scattering) to π (back
scattering). value is the value of the phase function at each
angle. The phase function is normalized according to (1) using
trapezoidal quadrature.

legendreCoefficients The coefficients in a Legendre polynomial expansion of the
phase function.

extinction,
singleScatteringAlbedo

The extinction and single scattering albedo, in user-defined units.

description Annotation of the user’s choice.

status This procedure reports errors or warnings if the input arguments
do not make sense (i.e. the value of the phase function is less
than 0 at some angle).
July 18, 2006

 phase = new_PhaseFunction(g**(/ (i, i = 1, nLegendreCoefficients)/), &
 status = status)

Procedure copy_PhaseFunction

Creates a copy of an existing phase function.

Definition

function copy_PhaseFunction(original) result(thisCopy)
 type(phaseFunction), intent(in) :: original
 type(phaseFunction) :: thisCopy

Use

If p1 and p2 are both variables of type phaseFunction, and p1 has been previously defined, its
contents can be copied to p2:

 p2 = copy_PhaseFunction(p1)

Procedure getInfo_PhaseFunction

Provides information about the native representation of a particular phaseFunction variable.

Definition

subroutine getInfo_PhaseFunction(phaseFunctionVar, nCoefficients, nAngles, &
 nativeAngles, status)
type(phaseFunction), intent(in) :: phaseFunctionVar
integer, optional, intent(out) :: nCoefficients, nAngles
real, dimension(:), optional, intent(out) :: nativeAngles
type(ErrorMessage), optional, intent(out) :: status

nCoefficients,
nAngles

The number of Legendre coefficients or the number of angles at
which the phase function was originally defined. If the phase
function was originally defined as a set of Legendre coefficients
then nAngles=0; if the phase function was defined as a set of
angle-value pairs then nCoefficients = 0.

nativeAngles The angles at which the phase function was originally defined
(i.e. the value of the argument scatteringAngle supplied when
new_PhaseFunction was called).

status An error occurs if the input phase function has not been defined.
A warning is set if the length nativeAngles does not match
original definition.
July 18, 2006

Use

This procedure can be used in conjunction with getPhaseFunctionValues or
getPhaseFunctionCoefficients to recover the phase function as it was originally defined. In
this example p1 is a variable of type phaseFunction and angles, values, and coeffs are real,
allocatable arrays:

 call getInfo_PhaseFunction(p1, nCoefficients, nAngles, status = status)
if (.not. stateIsFailure(status)) then
 if(nAngles > 0) then
 allocate(angles(nAngles), values(nAngles))
 call getInfo_PhaseFunction(p1, nativeAngles = angles, status = status)
 call getPhaseFunctionValues(p1, angles, values, status)
 else
 allocate(coeffs(nCoefficients))
 call getPhaseFunctionCoefficients(p1, coeffs, status)
 end if
end if

Procedure finalize_phaseFunction

Releases resources used be a variable of type phaseFunction. This procedure should be called
before the variable is reused.

Definition

subroutine finalize_PhaseFunction(phaseFunctionVar)
 type(phaseFunction), intent(inout) :: phaseFunctionVar

Use

Calling this function frees all resources used by the variable. All data is lost.

 call finalize_phaseFunction(p1)

Procedure isReady_phaseFunction

Tests a phase function variable to see if it holds a valid phase function definition

Definition

elemental function isReady_phaseFunction(phaseFunctionVar)
type(phaseFunction), intent(in) :: phaseFunctionVar
logical :: isReady_phaseFunction

The function returns .TRUE. the phase function variable is ready for use, and .FALSE. otherwise.
July 18, 2006

Procedure getPhaseFunctionValues

Retrieves the value of the phase function at a set of arbitrary angles. If the phase function was
originally stored as angle-value pairs the value at arbitrary angles is computed by interpolating
linearly in the cosine of the scattering angle.

Definition

Phase function values may be determined from either a single phase function or from a phase
function table.

subroutine getPhaseFunctionValues(phaseFunctionVar, scatteringAngle, value, &
 status)
 type(phaseFunction), intent(in) :: phaseFunctionVar
 real, dimension(:), intent(in) :: scatteringAngle
 real, dimension(:), intent(out) :: value
 type(ErrorMessage), intent(inout) :: status

or

subroutine getPhaseFunctionValues(table, scatteringAngle, values, status)
 type(phaseFunctionTable), intent(in) :: table
 real, dimension(:), intent(in) :: scatteringAngle
 real, dimension(:, :), intent(out) :: values

 type(ErrorMessage), intent(inout) :: status

Either a single phase function or a table of phase functions may be supplied

phaseFunctionVar The phase function. It may have been originally defined as either
a set of angles and values or as a set of Legendre coefficients.

table A phase function table

scatteringAngle The angles, specified in radians, at which the value of the phase
function(s) is/are desired. These must be increasing and unique.
If the phase function was originally specified as angle-value
pairs, the value is interpolated to the desired angles linearly in the
cosine of the scattering angle.

The dimensions of the output array depend on the kind of the input argument:

value The value of the normalized phase function at the angles speci-
fied by scatteringAngle.

values The values of the normalized phase function at the angles speci-
fied by scatteringAngle. The first dimension of the array is the
same as the length of scatteringAngle, and the second dimen-
sion as large as the number of entries in the phase function table.

status The procedure fails if any of the input arguments are inappropri-
ate.
July 18, 2006

Use

In this example we create a Henyey-Greenstein phase function using 64 Legendre coefficients,
then retrieve the value of this phase function at one degree intervals from 0 to 180 degrees.

 integer, parameter :: nAngles = 181
real, parameter :: g = 0.85 ! Asymmetery parameter
real, dimension(nAngles) :: scatteringAngle, phaseFunctionValue
…
! Henyey-Greenstein phase function
phase = new_PhaseFunction(g**(/ (i, i = 1, 64)/), status = status)
! Scattering angles every one degree from 0 to 180, expressed in radians
scatteringAngle(:) = pi / 180. * (/ (i, i = 1, nAngles) /))
call getPhaseFunctionValues(phase, scatteringAngle, value, status)

Procedure getPhaseFunctionCoefficients

Retrieves the coefficients in the Legendre expansion of the phase function (2), starting with

(since). Note that, if the phase function was supplied as Legendre coefficients, the number

of coefficients stored in the variable is available through procedure getInfo_PhaseFunction.

Definition

subroutine getPhaseFunctionCoefficients(phaseFunctionVar, &
 legendreCoefficients, status)

 type(phaseFunction), intent(in) :: phaseFunctionVar
 real, dimension(:), intent(out) :: legendreCoefficients

 type(ErrorMessage), intent(out) :: status

Use

The following example shows how to read the coefficients of the phase function expansion,
assuming that the variable phase has been initialized at some point in the code.

 integer, parameter :: nCoefficients = 128
real, dimension(nCoefficients) :: coefficients
…
call getPhaseFunctionCoefficients(phase, coefficients, status)

phaseFunctionVar The phase function. It may have been defined as either a set of
angles and values or as a set of Legendre coefficients.

legendreCoefficients The coefficients in the Legendre series expansion of the phase
function. If the phase function was originally defined as a series
of N coefficients, then legendreCoefficients(N+1:) = 0.

status The procedure fails if any of the input arguments are inappropri-
ate.

χi χ1

χ0 1≡
July 18, 2006

Implementation Notes

Important: In the current implementation, the Legendre coefficients are not computed if the phase
function was originally stored as a set of values at specified scattering angles.

Procedure getExtinction

Retrieves the extinction, in user-defined units, supplied when the phase function was initialized.

Definition

elemental function getExtinction(phaseFunctionVar)

This is a real-valued function. If no value of extinction was supplied when the phase function was
created this function returns 0.

Procedure getSingleScatteringAlbedo

Retrieves the single scattering albedo supplied when the phase function was initialized.

Definition

elemental function getSingleScatteringAlbedo(phaseFunctionVar)

This is a real-valued function. If no value of single scattering albedo was supplied when the phase
function was created this function returns 0.

Procedures for collections (“tables”) of phase functions

A variable of type phaseFunctionTable is a collection of individual phase functions with a key
that describes the parameter that varies among the phase functions. If you have computed a set of
phase functions for cloud drops as a function of drop size, for example, they can be collected in a
phase function table with key indicating the effective radius. Phase function tables are built on
individual phase functions, so most of what applies to variables of type phaseFunction also
applies to variables of type phaseFunctionTable. Phase function tables normally describe the
dependence of the single scattering properties of a single component of the atmosphere (e.g. aero-
sols) depend on some parameter (e.g. particle size).

Procedure new_PhaseFunctionTable

Creates a new phase function table. The phase functions may be specified as an arbitrary vector of
type phaseFunction, or may be a set of phase function values at a uniform set of scattering
angles.

Definition

function new_PhaseFunctionTable(phaseFunctionDefinitions, &
 phaseFunctionDescriptions, tableDescription, status)&
 result(newPhaseFunction)
! phaseFunctionDefinitions may be either
July 18, 2006

 real, dimension(:), intent(in) :: scatteringAngle
 real, dimension(:, :), intent(in) :: values
 real, dimension(:), optional, intent(in) :: extinction, &
 singleScatteringAlbedo
! or
 type(phaseFunction), dimension(:),intent(in) :: phaseFunctions
! Other arguements are
 real, dimension(:), intent(in) :: key
 character(len = *), optional, intent(in) :: tableDescription
 type(ErrorMessage), intent(out) :: status
 type(phaseFunctionTable) :: table

phaseFunctionDefinitions may be specified in one of two mutually exclusive ways. To
specify a set of phase function values at a uniform set of scattering angles:

scatteringAngle The set of scattering angles for a collection of phase functions

values A 2D array containing the phase functions for each entry in the
variable key. The first dimension is the scattering angle (i.e.
size(values, 1) must equal size(scatteringAngle)); the
second corresponds to the key (i.e. size(values, 2) must equal
size(key)).

extinction,
singleScatteringAlbedo

Optionally, the extinction and single scattering albedo, in user-
defined units. These must be the same length as key. The default
value is 0.

More generally:

phaseFunctions A vector of variables of type phaseFunction, defined arbi-
trarily. This must be the same length as key.

In both cases:

key The value of the parameter that varies among the phase func-
tions. If the various entries represent the way phase function var-
ies with drop size, for example, then key holds the drop size for
each entry. The values should be unique and increasing.

phaseFunctionDescript
ions

Optionally, the descriptions of the individual phase functions.

tableDescription Optionally, a description of the entire table (i.e. “Hexagonal
crystals vs. size, computed using ray-tracing”).

status Reports errors or warnings if one or more input arguments do not
make sense, have the wrong size, etc.
July 18, 2006

Use

Imagine that we had written a procedure called Mie to compute the phase function of a distribu-
tion of water drops as a function of their effective radius, and have defined a set of scattering
angles at which we want the phase function values. We can store the phase functions for drop
sizes from 1 to 20 microns as follows:

 integer, parameter :: nSizes = 20, nAngles = 1000
real, dimension(nAngles), parameter :: scatteringAngles = (/ … /)
real, dimension(nSizes) :: key
real, dimension(nSizes, nAngles) :: values

do size = 1, nSizes
 values(i, :) = Mie(real(size), scatteringAngles)
end do
table = new_PhaseFunctionTable(scatteringAngles, values, &
 key = real((/ (size, size = 1, nSizes) /)), &
 status)

Procedure copy_PhaseFunctionTable

Creates a copy of an existing phase function table. Analogous to copy_PhaseFunction.

Definition

function copy_PhaseFunctionTable(original) result(thisCopy)
 type(copy_PhaseFunctionTable), intent(in) :: original
 type(copy_PhaseFunctionTable) :: thisCopy

Use

If t1 and t2 are both variables of type phaseFunctionTable, and t1 has been previously defined,
its contents can be copied to t2:

 t2 = copy_PhaseFunctionTable(t1)

Procedure getInfo_PhaseFunctionTable

Provides information about a variable of type phaseFunctionTable.

Definition

subroutine getInfo_PhaseFunctionTable(table, nEntries, key, &
 tableDescription, status)
type(phaseFunctionTable), intent(in) :: table
integer, optional, intent(out) :: nEntries
real, dimension(:), optional, intent(out) :: key,extinction, &
 singleScatteringAlbedo
character(len = *), &
 dimension(:), optional, intent(out) :: phaseFunctionDescriptions
character(len = *), optional, intent(out) :: tableDescription
July 18, 2006

type(ErrorMessage), intent(out) :: status

Procedure finalize_phaseFunctionTable

Releases resources used be a variable of type phaseFunctionTable. Analogous to
finalize_phaseFunction.

Procedure isReady_phaseFunctionTable

Tests a phase function variable to see if it holds a valid phase function table. Analogous to
isReady_phaseFunction.

Procedure getElement

Extracts a single phase function from a phaseFunctionTable. The resulting phaseFunction
variable is in the same form (i.e. Legendre coefficients or angle-value pairs) in which the table
was originally defined.

Definition

function getElement(n, table, status)
integer, intent(in) :: n
type(phaseFunctionTable), intent(in) :: table
type(ErrorMessage), intent(out) :: status
type(phaseFunction) :: getElement

Use

To extract the fifth element of a phase function table

 phase = getElement(5, table, status)

Errors occur if the table is not initialized or if a non-existent entry is requested.

nEntries Optionally, the number of phase functions in the table.

key Optionally, the value of key supplied when the table was created.

extinction,
singleScatteringAlbedo

Optionally, the extinction and single scattering albedo as a func-
tion of the key value. Extinction is in user-specifed units of
inverse length.

phaseFunctionDescript
ions

Optionally, text descriptions of the individual phase functions.

tableDescription Optionally, the description of the entire table.

status An error occurs if the table has not been defined.Warnings are set
if key or phaseFunctionDescriptions are not the same length
as the number of entries in the table.
July 18, 2006

Procedure write_PhaseFunctionTable

Writes a set of phase functions and the information that describes them to a disk file for later use.

Definition

subroutine write_PhaseFunctionTable(table, fileName, status)
type(phaseFunctionTable), intent(in) :: table
character(len = *), intent(in) :: fileName
type(ErrorMessage), intent(out) :: status

Use

Frank Evans at the University of Colorado distributes programs that compute the single scattering
properties for cloud water drop distributions with variable effective radii. The phase function for
each phase function is written to a text file as the shortest possible series of Legendre coefficients,
though Frank includes the term in his coefficients he stores. The main loop of a utility pro-
gram to convert his files to this format and write them out is as follows:

 do i = 1, nEntries
 read(fileUnit, *) key(i), extinction, ssa, nTerms
 allocate(legendreCoefficients(nTerms - 1))
 read(fileUnit, *) legendre0, legendreCoefficients(:)
 ppVector(i) = new_PhaseFunction(legendreCoefficients / &
 (/ (2 * l + 1, l = 1, nTerms) /), &
 extinction, ssa, status = status)
 call printStatus(status)
 deallocate(legendreCoefficients)
end do
table = new_PhaseFunctionTable(ppVector, key, tableDescription, status)
call printStatus(status)
call write_PhaseFunctionTable(table, trim(outputFileName), status)

Implementation notes

In the current implementation, tables may only be written if the phase function table was specified
using a single set of angles, or as a set of Legendre coefficients for each phase function.

The current implementation requires Netcdf 3.5.1 or higher with Fortran 90 support.

Procedure add_PhaseFunctionTable

Adds a phase function table to an open file. A character string may be used to uniquely identify
tables within a file.

Definition

subroutine add_PhaseFunctionTable(table, fileId, prefix, status)
type(phaseFunctionTable), intent(in) :: table
integer, intent(in) :: fileId
character(len=*), optional, intent(in) :: prefix

2l 1+
July 18, 2006

type(ErrorMessage), intent(out) :: status

Implementation notes

This function relies on implementation detils in that the file referenced by fileId must be of the
same type as is written internally by the scatteringPhaseFunctions module. In the default
implementation, for example, fileId must refer to an open netCDF file in data mode. The func-
tion is normally used to bundle phase function table with the rest of the components when storing
a variable of type domain from module opticalProperties.

Procedure read_PhaseFunctionTable

Reads a set of phase functions and their descriptive information from a disk file written by
write_PhaseFunctionTable. If the table has been previously defined, it should be released with
finalize_phaseFunctionTable before being passed to read_PhaseFunctionTable.

Definition

subroutine read_PhaseFunctionTable(fileName, fileId, table, prefix, status)
character(len = *), optional, intent(in) :: fileName
integer, optional, intent(in) :: fileId
type(phaseFunctionTable), intent(out) :: table
character(len = *), optional, intent(in) :: prefix
type(ErrorMessage), intent(out) :: status

Implementation notes

Supply fileName if the table is to be read from a stand-alone file. The capability to read from an
open file using fileID is used when the phase function tables are stored along with other infor-
mation (as in objects of type domain in module opticalProperties, for example).

In the current implementation, tables may only be read if the phase function table was specified
using a single set of angles, or as a set of Legendre coefficients for each phase function.

The phase function table is read from a file specified in one of two ways:

fileName The name of the file from which the table is to be read

or

fileId The numeric ID of the file from which the table is to be read. The
file associated with this ID must be open and readable using the
same methods as the calling procedure.

table The phase function table.

prefix Optionally, a character string used to uniquely identify each
phase function table to be read from the file.

status An error occurs if the table can not be read.
July 18, 2006

The current implementation requires Netcdf 3.5.1 or higher with Fortran 90 support.
July 18, 2006

Module ErrorMessages

This module provides a means for procedures to signal whether they have succeed, encountered
difficulties, or failed during execution. The chain of events can be saved and reported.

Background

Unlike some other programming languages (e.g. Java), Fortran does not provide any graceful way
to handle error conditions. Typically, error are handled by printing messages to the screen and per-
haps halting execution, or by setting some integer variable to a predefined value. But printing to
the screen may not be desirable - if code is running within a graphical user interface, for example,
(as part of a Macintosh application, say) then “the screen” may not exist. Simply indicating that
some calculation just hasn’t succeeded, on the other hand, can make debugging very difficult.

This module provides a uniform way for procedures to accumulate a history of which steps have
succeeded, encountered problems, or failed. A variable of type ErrorMessage encapsulates the
“state” of the calculation, which may be one of Success, Warning, or Failure. Text messages
can be added each time the state is set. Setting the state appends information to the variable, and
the current state can be determined at any time. As the variable is passed from procedure to proce-
dure, therefore, a history is constructed. This allows for more informative reporting - if function A
depends on the results of functions B and C, and function B fails, function A can note why it did not
complete when returning a failure state to its calling routine.

The state of an variable of type ErrorMessage whose state has not been explicitly set is not
defined.

Using the module

Depends on modules: none.

Defines types: ErrorMessage

Procedures: initializeState,
setStateToSuccess, setStateToWarning, setStateToFailure,

setStateToCompleteSuccess, stateIsSuccess, stateIsWarning, stateIsFailure,
firstMessage, nextMessage, getCurrentMessage, moreMessagesExist,
getErrorMessageLimits

Procedures for setting and testing the current state

Procedure initializeState

Erases any information held in the variable and sets the state to Undefined.

Definition

subroutine initializeState(messageVariable)
type (ErrorMessage), intent (out) :: messageVariable
July 18, 2006

Procedure setStateToSuccess, setStateToWarning, setStateToFailure,
setStateToCompleteSuccess

Sets the state to one of Success, Warning, or Failure. Optional text messages may be included.
A call to setStateToCompleteSuccess removes any existing history.

Definition

subroutine setStateTo[Success|Warning|Failure](messageVariable, messageText)
type (ErrorMessage), intent (out) :: messageVariable
character (len = *), optional, intent (in) :: messageText

Use

Here is an example in which function a fails if function b or c fails.

 function a(…, status)
 …
 type(ErrorMessage), intent(inout) :: status
 …
 call b(…, status)
 if (stateIsSuccess(status)) then
 …
 call c(…, status)
 if (stateIsSuccess(status)) then
 …
 else
 call setStateToFailure(status, “Function a: function c failed.”)
 end if
 else
 call setStateToFailure(status, “Function a: function b failed.”)
 end if
 if(stateIsSuccess(status)) call setStateToSuccess(status)
end function a

Procedure stateIsSuccess, stateIsWarning, stateIsFailure

Determine whether current state: stateIsSuccess returns .true. if the current state is
Success, stateIsWarning returns .true. if the current state is Warning, etc. If the state has
never been set it is undefined and all three functions will return .false.

Definition

function stateIs[Success|Warning|Failure](messageVariable)
type (ErrorMessage), intent (in) :: messageVariable
logical :: stateIsSuccess

Procedures for setting and testing the current state

A variable of type ErrorMessage may be thought of as a list or stack of states and associated
error messages. The following four procedures are used together to work through the history of
states.
July 18, 2006

This follows the “Iterator” pattern from the book “Design patterns: Elements of reusable object-
oriented software” (E Gamma, R. Helm, R. Johnson, and J. Vlissides, 1995, ISBN 0-201-63361-
2). It is more robust than determining the number of states in the history and marching trough
them one by one, since the number of states in the history may be changed at any time without ill
effect.

Procedure firstMessage

Makes the first state set for this variable (typically the state set by the lowest level of the call tree)
the current state.

Definition

subroutine firstMessage(messageVariable)
type (ErrorMessage), intent (inout) :: messageVariable

Use

The following subroutine starts at the beginning of the history and prints out the state at each step,
as well as any text messages that were supplied.

 subroutine printStatus(status)
 use ErrorMessages
 type(ErrorMessage), intent(inout) :: status

 call firstMessage(status)
 historyLoop: do
 if (.not. moreMessagesExist(status)) exit historyLoop
 ! Only one of these lines will be executed
 if(stateIsSuccess(status)) print *, “Success:”
 if(stateIsWarning(status)) print *, “Warning:”
 if(stateIsFailure(status)) print *, “Failure:”
 if(len_trim(getCurrentMessage(status)) > 0) &
 print *, trim(getCurrentMessage(status))
 call nextMessage(status)
 end do historyLoop
end subroutine printStatus

Procedure nextMessage

Makes the next state set for this variable (i.e. the next event in the history) the current state.

Definition

subroutine nextMessage(messageVariable)
type (ErrorMessage), intent (out) :: messageVariable

Use

See the example for procedure firstMessage.
July 18, 2006

Procedure getCurrentMessage

Returns the text message associated with the current state. If no message was supplied the func-
tion returns the null string (““).

Definition

function getCurrentMessage(messageVariable)
type (ErrorMessage), intent (in) :: messageVariable
character (len = max_message_length) :: getCurrentMessage

Use

See the example for procedure firstMessage.

Procedure moreMessagesExist

Returns .true. if there are elements in the history beyond the current element and .false. oth-
erwise.

Definition

function moreMessagesExist(messageVariable)
type (ErrorMessage), intent (in) :: messageVariable
logical :: moreMessagesExist

Use

See the example for procedure firstMessage.

Procedure getErrorMessageLimits

Definition

subroutine getErrorMessageLimits(messageVariable, maxNumberOfMessages, &
 maxMessageLength)

type (ErrorMessage), intent (in) :: messageVariable
integer, optional, intent (out) :: maxNumberOfMessages, maxMessageLength

Reports the maximum number of messages that may be stored and the maximum number of char-
acters in each message. These parameters are set by the module developers, who should ensure
that both are big enough not to cause problems.

Implementation note

 In the default implementation, maxNumberOfMessages = 100 and maxMessageLength = 256.
July 18, 2006

Module numericUtilites

This module contains numeric utilities: subroutines to compute the weights and abscissae for
Lobatto and Gauss-Legendre quadrature; the value of the Legendre polynomials at specified val-
ues, and a routine to find the two entries in a table that bracket a test value.

Background

Lobatto and Gauss-Legendre quadrature are methods for integrating functions on known interval
([-1, 1] and (-1, 1), respectively). For N point quadrature the methods supply a set of points in the
interval called the abscissae and weights . An arbitrary function can then be

approximated as

 (1)

These quadrature methods are accurate to higher order than, say, the trapezoidal rule.

The Legendre polynomials are a set of orthogonal, normalized polynomials on the interval [-1,

1]. A series of Legendre polynomials are often used to express the dependence of the single scat-
tering phase function on the cosine of the scattering angle. (See the documentation for model
scatteringPhaseFunctions for more details.) The Legendre polynomials may be computed
using a recurrence relation:

(2)

Using the module

Depends on modules: none.

Defines types: none.

Procedures: computeLobattoTerms, computeGaussLegendreTerms,
computeLegendrePolynomials, findIndex, gammln

Procedures

Procedure computeLobattoTerms

Compute the weights and abscissae for a user-specified number of points on the interval [1, 1].

xN wN xN() f x()

f x() x()d

1–

1

∫ f xi()wi xi()
i 1=

N

∑≅

Pl

P0 x() 1=

P1 x() x=

Pl 1+ x() 2l 1+()xPl lPl 1––() l 1+()⁄=
July 18, 2006

Definition

pure subroutine computeLobattoTerms(mus, weights)
real, dimension(:), intent(out) :: mus, weights

Use

To compute the interval of a function func(x) over the interval [-1, 1] using N-point Lobatto inte-
gration

real, dimension(Npoints) :: xs, weights
…
call computeLobattoTerms(xs, weights)
sum = dot_product(weights(:), func(xs(:))

Procedure computeGaussLegendreTerms

Compute the weights and abscissae for a user-specified number of points on the interval (1, 1).

Definition

pure subroutine computeGaussLegendreTerms(mus, weights)
real, dimension(:), intent(out) :: mus, weights

Use

To compute the interval of a function func(x) over the interval (-1, 1) using N-point Gauss-Leg-
endre integration

real, dimension(Npoints) :: xs, weights
…
call computeGaussLegendreTerms(xs, weights)
sum = dot_product(weights(:), func(xs(:))

Procedure computeLegendrePolynomials

Compute the value of the Legendre polynomials at a set of user specified points in the interval [-1,
1]. This is an array-valued function. The first dimension is the order of the polynomial, starting
with 0; the second dimension is the position in the interval.

Definition

pure function computeLegendrePolynomials(maxL, mus) result(legendreP)
integer, intent(in) :: maxL
real, dimension(:), intent(in) :: mus
real, dimension(0:maxL, size(mus)) :: legendreP

Use

Given a series of L coefficients chi(:) in a Legendre series expansion of a phase function, and a
set of N points x(:), the phase function at those points can be computed as

 allocate(legendreP(0:L, N))
July 18, 2006

legendreP(:, :) = computeLegendrePolynomials(L, cos(x(:)))
value(:) = matmul((/ 1., chi(:) /), &
 spread((/ (2*l + 1, l = 0, L) /), &
 dim = 2, ncopies = nValues) * legendreP(:,:))

Procedure findIndex

Finds the index into a table such that table(i) <= value < table(i+i). We make several
assumptions: 1) that values in the table are always increasing, 2) that value will be spanned by
the table entries, and 3) that firstGuess always makes sense (i.e. that is greater than 1 and less
than the size of the table minus 1).

Definition

pure function findIndex(value, table, firstGuess)
real, intent(in) :: value
real, dimension(:), intent(in) :: table
integer, optional, intent(in) :: firstGuess
integer :: findIndex

Procedure gammln

Computes the natural log of the function Γ(x).

Definition

elemental function gammln(x)
real, intent(in) :: x
July 18, 2006

July 18, 2006

Module CharacterUtils

This module contains several utility functions for converting integers and real numbers to and
from character strings. No error checking is done, so passing incorrect arguments to these func-
tions is likely to cause a fatal Fortran runtime error.

Using the module

Depends on modules: none.

Defines types: none.

Procedures: CharToInt, IntToChar, CharToReal

Procedures

Procedure CharToInt

Reads a character string into an integer variable.

Definition

elemental function CharToInt(inputString)
character(len = *), intent(in) :: inputString
integer :: CharToInt

Procedure IntToChar

Writes an integer as a left-justified character string.

Definition

elemental function IntToChar(integerValue)
integer, intent(in) :: integerValue
character(len = maxStringLength) :: IntToChar

Procedure CharToReal

Reads a character string into a real variable.

Definition

elemental function CharToReal(inputString)
character(len = *), intent(in) :: inputString
real :: CharToReal

	Overview
	Framework design
	Coding notes
	Working with the code framework

	Module monteCarloRadiativeTransfer
	Background
	Using the module
	Procedure new_Integrator
	Procedure specifyParameters
	Procedure computeRadiativeTransfer
	Procedure reportResults
	Procedure copy_Integrator
	Procedure isReady_Integrator
	Procedure finalize_Integrator

	Module opticalProperties
	Background
	Using the module
	Procedure new_Domain
	Procedure addOpticalComponent
	Procedure deleteOpticalComponent
	Procedure replaceOpticalComponent
	Procedure getOpticalPropertiesByComponent
	Procedure getInfo_Domain
	Procedure write_Domain
	Procedure read_Domain
	Procedure finalize_Domain

	Module monteCarloIllumination
	Background
	Using the module
	Procedure new_PhotonStream
	Procedure finalize_PhotonStream
	Procedure getNextPhoton
	Procedure morePhotonsExist

	Module RandomNumbers
	Background
	Using the module
	Procedures

	Procedure new_RandomNumberSequence
	Procedure finalize_RandomNumberSequence
	Procedure getRandomReal

	Module inversePhaseFunctions
	Background
	Using the module
	Procedure computeInversePhaseFuncTable

	Module scatteringPhaseFunctions
	Background
	Using the module
	Procedures for individual phase functions

	Procedure new_PhaseFunction
	Procedure copy_PhaseFunction
	Procedure getInfo_PhaseFunction
	Procedure finalize_phaseFunction
	Procedure isReady_phaseFunction
	Procedure getPhaseFunctionValues
	Procedure getPhaseFunctionCoefficients
	Procedure getExtinction
	Procedure getSingleScatteringAlbedo
	Procedures for collections (“tables”) of phase functions

	Procedure new_PhaseFunctionTable
	Procedure copy_PhaseFunctionTable
	Procedure getInfo_PhaseFunctionTable
	Procedure finalize_phaseFunctionTable
	Procedure isReady_phaseFunctionTable
	Procedure getElement
	Procedure write_PhaseFunctionTable
	Procedure add_PhaseFunctionTable
	Procedure read_PhaseFunctionTable

	Module ErrorMessages
	Background
	Using the module
	Procedures for setting and testing the current state

	Procedure initializeState
	Procedure setStateToSuccess, setStateToWarning, setStateToFailure, setStateToCompleteSuccess
	Procedure stateIsSuccess, stateIsWarning, stateIsFailure
	Procedures for setting and testing the current state

	Procedure firstMessage
	Procedure nextMessage
	Procedure getCurrentMessage
	Procedure moreMessagesExist
	Procedure getErrorMessageLimits

	Module numericUtilites
	Background
	Using the module
	Procedures

	Procedure computeLobattoTerms
	Procedure computeGaussLegendreTerms
	Procedure computeLegendrePolynomials
	Procedure findIndex
	Procedure gammln

	Module CharacterUtils
	Using the module
	Procedures

	Procedure CharToInt
	Procedure IntToChar
	Procedure CharToReal

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

